Midterm Exam (80pts)
Math 214 Section Q1 Winter 2010

Your name: ID#:

1.(30 pts) Test the series for convergence or divergence
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Solution.

Comparison test.
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The series Z (5) is a geometric series with » = 4/5. Since |r| < 1,

n=1
it is convergent.

Therefore, by the comparison test, the original series is also convergent.
Other possible tests: root test, limit comparison test, ratio test.
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Solution.

Root test.
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Therefore, the series is convergent by the root test.
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Solution.
1
Integral test. Let f(x) = 1 f is clearly positive, continuous.
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f is also decreasing since the denominator is a product of increasing
functions. So, all the assumptions of the integral test are satisfied.
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Thus, the integral is divergent. Therefore, by the integral test the series
is also divergent.




2.(10 pts)

3.(10 pts)

Find the radius of convergence and interval of convergence of the series
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Solution. Test for absolute convergence using the ratio test.
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|z — 4] < 5.

Ap+1
Gp,

lim

n—oo

Thus, the radius of convergence is R = 5.
—b<x—4<b,

—1l<ax<9.

Now test the endpoints.
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This is a p-series with p = 1/2 < 1. Thus divergent.
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This is an alternating series. u,, = Ln is a decreasing sequence, whose

limit is zero. Therefore the latter series is convergent.
So, the interval of convergence of the original power series is (—1,9].
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Find a power series representation for the function f(z) = —( 1+ 222)
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Solution. We will use the formula

both sides we get

Replace = by —2x.
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Multiply both sides by 2.
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4.(10 pts)

5.(10 pts)

6.(10 pts)

Find the slope of the tangent line to the polar curve r = sin 260 at the
point where ¢ = %.
Solution.

Using the relation between polar and Cartesian coordinates, we have
x = sin 260 cos 0,
y = sin 20sin 6.

dy  dy/df  2cos20sinf + sin 26 cos §
dr  dr/df  2cos20cosf —sin20sinf’
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Find the area of the region enclosed by the cardioid » = 1 + cos 6.

Solution.
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Find the area of the surface generated by revolving the polar curve
r=cosf +sinf, 0 < 0 < /2, about the z-axis.

Solution.
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